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EXPERIMENTAL RESULTS: DETECTION AND TRACKING OF LOW SNR SINUSOIDS
USING REAL-TIME LMS AND RLS LATTICE ADAPTIVE LINE ENHANCERS i f.

Terence R. Albert, Hana Abusalem, Michael E. Juniper 1 *40e0

Naval Ocean Systems Center,,
San Diego, CA 92152-5000 , h

ABSTRACT with the RLS lattice and the LMS transversal
algorithms. While the performance of the LMS

The structure traditionally used in transversal algorithm is well documented [6-
Adaptive Line Enhancer (ALE) applications is 9] and to a lesser extent so is the perfor-
the transversal filter form of Widrow's mance of the RLS transversal algorithm [10),
Least Mean Square (LMS) algorithm. It has there is very little published on the per-
been reasoned that an ALE implemented with formance of the RLS Lattice. This is due in
the Recursive Least Squares Tattice (RLS part to the algorithm complexity which makes
Lattice) Algorithm may offer advantages over the implementation and analysis arduous.
LMS implementations. The expected advantages Test conditions under which data were
include faster convergence, improved track- collected and processed is first described
ing of dynamic signals, and reduced sen- and then experimental results for stationary
sitivity to eigenvalue spread of the input sinusoids in noise as well as for slowly
data's correlation matrix. The work reported varying sinusoids in noise are shown. Com-
in this paper is a crimparison of the detec- parisons between LMS transversal and RLS
tion and tracking performance of ALEs imple- Lattice algorithms are made along with their
mented with the traditional LMS Transversal theoretical gains. Of particular interest
and the RLS Lattice algorithms. This com- for the non-stationary signal are the relat-
parison is based on experimental results ionships between reliable detection for low
obtained from a real-time custom hardware SNR sinusoids and filter parameters such as
system using 32-bit IEEE floating point filter length, and adaption speed as con-
format operating on stationary and non- trolled by step size A (LMS) or exponential
stationary sinusoids with added broadband decay factor (l-W) (RLS Lattice).
noise.

I. INTRODUCTION II. EXPERIMENTAL METHOD

A real-time adaptive filter test plat- Figure 1. is a block diagram of the ALE
form, called the Lattice Development System and the measurement arrangement identifying
(LDS), was designed and built at the Naval the primary input d(n), filter output y(n),
Ocean System Center (NOSC) to support per- and prediction error output e(n). As indi-
formance and behavior testing of adaptive cated, the input signal to the ALE is ob-
lattice and adaptive transversal algorithms, tained as the sum of a synthesized sinusoid
Of particular interest are arithmetic and and filtered white noise. Input signal and
quantizing related stability questions and noise levels are measured separately prior
the interactions between filter length and to summing, and are verified after summing
time constant of exponential memory when with an FFT spectrum analyzer. Output signal
tracking non-stationary signals. The LDS and noise levels are determined with the
consists of pipelined microprogrammable spectrum analyzer and are presented as the
Engine Boards performing 32-bit IEEE float- ratio of signal power to noise power in an
ing point arithmetic along with a Control equivalent one-Hz bandwidth in units of
Board which supports analog and diqital dB/Hz.
input/output (I/O) during processing. The The noise is bandlimited to 50 Hz by
system analog converters have 16-bit resolu- cascaded second order Butterworth filters
tion. The architecture and design of the LDS and the composite signal is sampled at 140
aredescribed in (1]. All results reported S/S. Each test is conducted for a fixed time
here were obtained from ALEs implemented on interval to permit the algorithms to achieve
this system. steady state performance after which 32

This paper focuses on the detection and transforms of length 2048 points are formed
tracking capabilities of low Signal to Noise and averaged to obtain stable spectral esti-
Ratio (SNR) sinusoids by ALEs implemented mates.



(2)

(n) ,tn) Minimum detectable signal level for
ICE non-stationary sinusoids was determined by

Teye integration across a waterfall display
Sconsisting of successive spectral power

estimates obtained from the spectrum
analyzer. Reliable estimates were identified
as a non-ambiguous trace on the CRT with

Asignal components exceeding background noise

over at least 50% of the spectral estimates.
y~n

III. PERFORMANCE FOR STATIONARY SINUSOID

FIGURE 1. ADAPTIVE LINE ENHANCER The theoretical narrowband (NB) signal
TEST AND MEASUREMENT ARRANGEMENT ampliude gain [6,7,8,9] for the LMS algo-

Figure 2a presents typical spectra ob- rithm is presented in (1).

tained from an LMS transversal ALE for
filters of length 16, 64, and 600 respec- NB GAIN = (L/2)*SNR (i)

tively. Figure 2b presents typical spectra 1 + (L/2)*SNR

obtained from an RLS Lattice ALE of the same Figure 3. presents a curve of this relation-
lengths. The signal used for this example is ship along with the measured performance of
a stationary sinusoid at 25 Hz with 0-db three different ALEs. These are the LMS
SNR. The convergence parameter A used in the transversal [5], the RLS Lattice [2,3], and
LMS algorithm is 2 °10 and the fading memory the Direct Coefficient Update RLS lattice
factor W used in the RLS Lattice algorithm [4]. The filters were each of length 600
is 0.99995. (taps or stages) and the appropriate conver-

Note the expected improvement in spect- gence factors or fading memory terms are
ral fidelity of the ALE output spectral indicated on the figure. As can be seen, the
fidelity and with increased filter length experimental data fits the theoretical curve
for both LMS and RLSL algorithms and note within reasonable tolerances.
the improved spectral fidelity and detection
of the sinusoid for the short RLS filters
over the same length LMS filter. -i
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20 --- L- 16 The theoretical output noise

3° . .L=600 power gain for the LMS ALE [6,7,8,9] is

40 .. given in (2).

S-5o0*- NOISE GAIN =p*L * a (2)

-60 ,. ...

lo where a is the input noise power. A similar
Sclosed form expression does not exist fo.

s0 -the RLS Lattice filter. Figure 4. presents a
I compatison of broadband noise reduction of

'A) .. 30 4.0 50.60.. . ; the ALE implemented with the LMS ard the RLS
Lattice algorithms as a function of filter

lrequ~nqw (Hz) length (L) for the indicated values of p and
FIGURE 2. SPECTRA OBTAINED FROM ALEs FOR W. The curves indicatp tha9 - rcA z'n ,

FILTERS OF LENGTH 16, 64, A!,, 'C3 USIF, LM'- -h te memory term (l-W) and the
Al.u RLS LATTICE ALGORITHMS filter length for the RLS lattice similar to



(3)

that indicated in (2) between the conver-
gence factor A and the filter length of the
LMS transversal algorithm.

Note that the RLS Lattice filter with 2 - -14
parameter W = 0.99995 (with bandwidth 2(1-W) 0. 2-12

104) exhibits nearly the same performance M - 2 .8

as the LMS filter with parameter g = 2 "10 (or -10

10-3). Thus, there appears to be an order of Z .4

magnitude diffejence in the influence of the -
parameters g and 2(1-W). .8 600Tap,
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IV. PERFORMANCE FOR NON-BTTIONARY SINUSOID
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PARAMETER BOUNDS FOR RECURSIVE LEAST SQUARES LATTICE

ADAPTIVE NOISE CANCELLERS
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ABSTRACT

The performance of adaptive noise cancellers implemented with

lattice algorithms is degraded by finite arithmetic effects, especially

as the value of the exponential windowing parameter approaches unity.
This degradation can be avoided if the window parameter value is kept
within a certain range, and if the lattice has a properly implemented

order expansion/contraction control mechanism. The region in parameter
space where one can expect good cancellation of sinusoidal and random

(broad-band) interference using 32-bit floating point arithmetic is

defined.


